

Dual Audio Operational Amplifier

General Description

The LM833 is a dual general purpose operational amplifier designed with particular emphasis on performance in audio systems.

This dual amplifier IC utilizes new circuit and processing techniques to deliver low noise, high speed and wide bandwidth without increasing external components or decreasing stability. The LM833 is internally compensated for all closed loop gains and is therefore optimized for all preamp and high level stages in PCM and HiFi systems.

The LM833 is pin-for-pin compatible with industry standard dual operational amplifiers.

Features

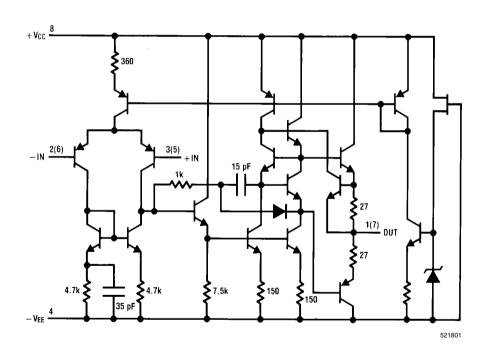
Wide dynamic range: >140dB

Low input noise voltage: 4.5nV/√Hz

■ High slew rate: 7 V/µs (typ); 5V/µs (min)
 ■ High gain bandwidth: 15MHz (typ); 10MHz (min)

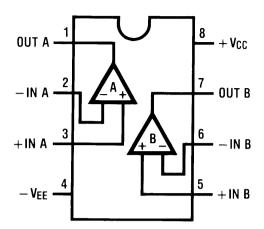
■ Wide power bandwidth: 13MHz (typ), 10MHz (thirl)

■ Low distortion: 0.002%


■ Low offset voltage: 0.3mV

Large phase margin: 60°

■ Available in 8 pin MSOP package


Schematic Diagram

(1/2 LM833)

Connection Diagram

Order Number LM833M, LM833MX, LM833AM, LM833AMX, LM833N, LM833MM or LM833MMX See NS Package Number M08A, N08E or MUA08A

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

Supply Voltage V_{CC}-V_{EE} 36V Differential Input Voltage (Note 3) V₁ ±30V Input Voltage Range (Note 3) V_{IC} ±15V Power Dissipation (Note 4) Pp 500 mW Operating Temperature Range Toph -40 ~ 85°C Storage Temperature Range T_{STG} -60 ~ 150°C Soldering Information Dual-In-Line Package Soldering (10 seconds) 260°C Small Outline Package (SOIC and MSOP) Vapor Phase (60 seconds) 215°C Infrared (15 seconds) 220°C ESD tolerance (Note 5) 1600V

DC Electrical Characteristics (Note 1, Note 2)

 $(T_A = 25^{\circ}C, V_S = \pm 15V)$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{OS}	Input Offset Voltage	$R_S = 10\Omega$		0.3	5	mV
I _{os}	Input Offset Current			10	200	nA
I _B	Input Bias Current			500	1000	nA
A _V	Voltage Gain	$R_L = 2 k\Omega, V_O = \pm 10V$	90	110		dB
.,	Outrot Valta and Outro	$R_L = 10 \text{ k}\Omega$	±12	±13.5		V
V _{OM}	Output Voltage Swing	$R_L = 2 k\Omega$	±12	±13.4		V
V _{CM}	Input Common-Mode Range		±12	±14.0		V
CMRR	Common-Mode Rejection Ratio	V _{IN} = ±12V	80	100		dB
PSRR	Power Supply Rejection Ratio	V _S = 15 ~ 5V, -15 ~ -5V	80	100		dB
IQ	Supply Current	V _O = 0V, Both Amps		5	8	mA

AC Electrical Characteristics

 $(T_A = 25^{\circ}C, V_S = \pm 15V, R_L = 2 \text{ k}\Omega)$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
SR	Slew Rate	$R_L = 2 k\Omega$	5	7		V/µs
GBW	Gain Bandwidth Product	f = 100 kHz	10	15		MHz
V _{NI}	Equivalent Input Noise Voltage (LM833AM, LM833AMX)	RIAA, $R_S = 2.2 \text{ k}\Omega$ (<i>Note 6</i>)			1.4	μV

Design Electrical Characteristics

 $(T_A = 25^{\circ}C, V_S = \pm 15V)$

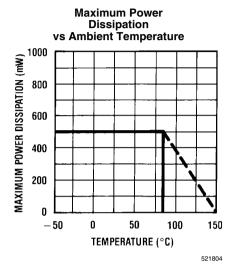
The following parameters are not tested or guaranteed.

Symbol	Parameter	Conditions	Тур	Units
$\Delta V_{OS}/\Delta T$	Average Temperature Coefficient		2	μV/°C
	of Input Offset Voltage			
THD	Distortion	$R_L = 2 kΩ, f = 20~20 kHz$	0.002	%
		$V_{OUT} = 3 \text{ Vrms}, A_V = 1$		
e _n	Input Referred Noise Voltage	$R_S = 100\Omega$, $f = 1 \text{ kHz}$	4.5	nV/√ Hz

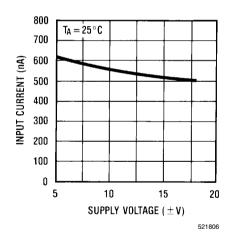
Symbol	Parameter	Conditions	Тур	Units
i _n	Input Referred Noise Current	f = 1 kHz	0.7	pA/√ Hz
PBW	Power Bandwidth	$V_0 = 27 V_{pp}, R_L = 2 kΩ, THD \le 1%$	120	kHz
f _U	Unity Gain Frequency	Open Loop	9	MHz
$\overline{\phi_{M}}$	Phase Margin	Open Loop	60	deg
	Input Referred Cross Talk	f = 20~20 kHz	-120	dB

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

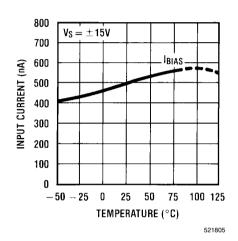
Note 2: All voltages are measured with respect to the ground pin, unless otherwise specified.

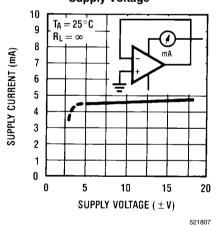

Note 3: If supply voltage is less than ±15V, it is equal to supply voltage.

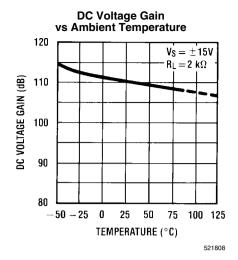
Note 4: This is the permissible value at $T_A \le 85^{\circ}C$.

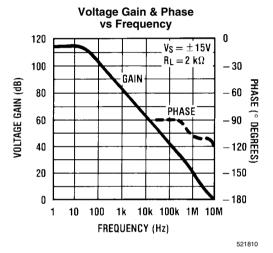

Note 5: Human body model, $1.5 \text{ k}\Omega$ in series with 100 pF.

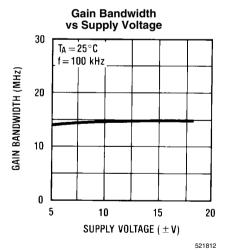
Note 6: RIAA Noise Voltage Measurement Circuit

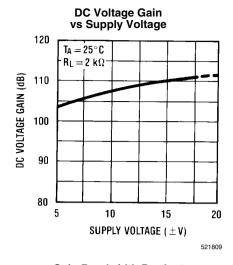

Typical Performance Characteristics

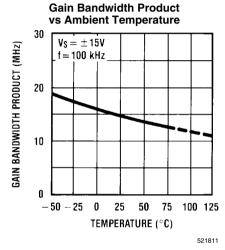

Input Bias Current vs Supply Voltage

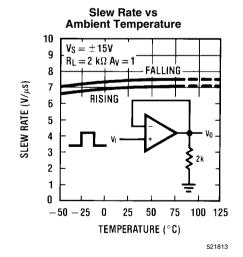

Input Bias Current vs Ambient Temperature

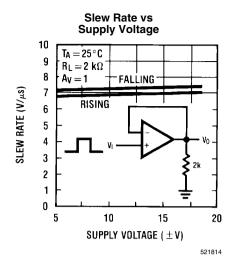


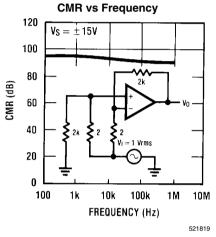

Supply Current vs Supply Voltage

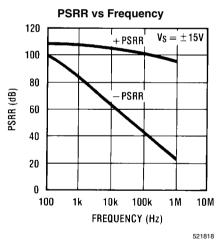


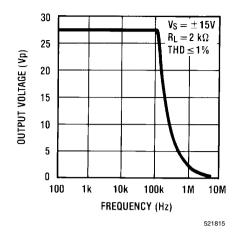


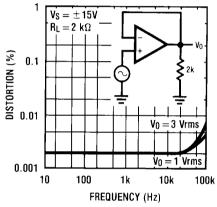


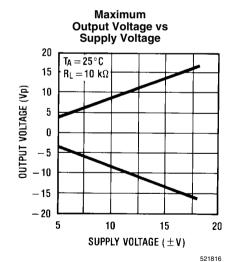


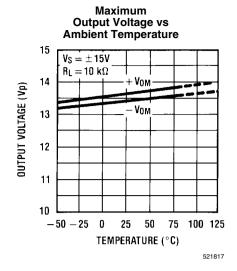


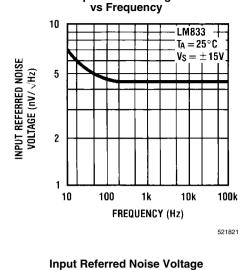




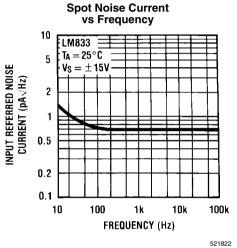


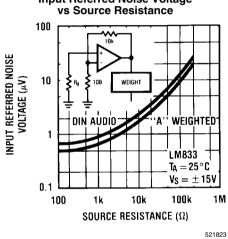

Power Bandwidth

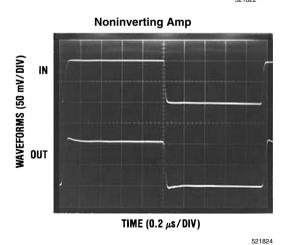

Distortion vs Frequency

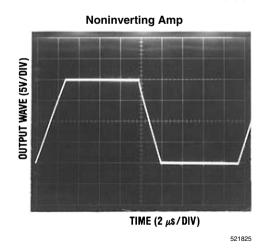


521820

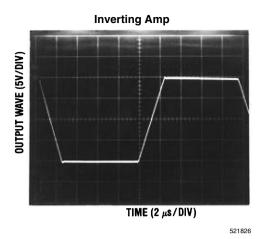


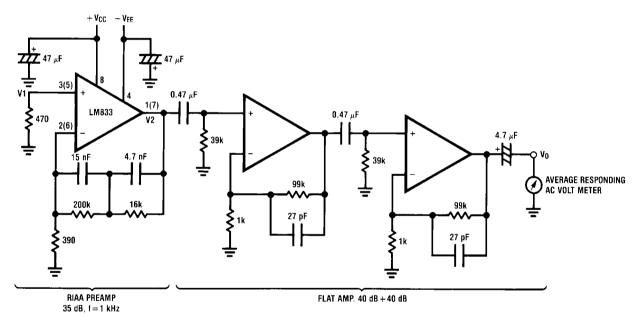






Spot Noise Voltage



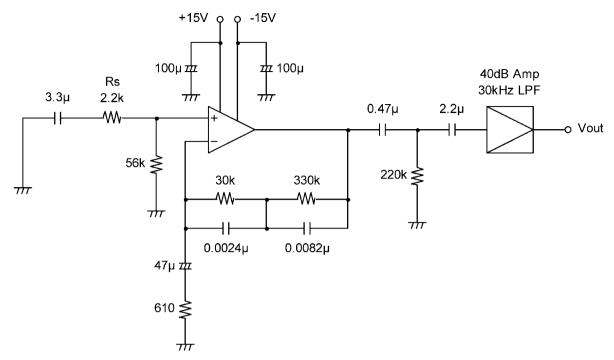


Application Hints

The LM833 is a high speed op amp with excellent phase margin and stability. Capacitive loads up to 50 pF will cause little change in the phase characteristics of the amplifiers and are therefore allowable.

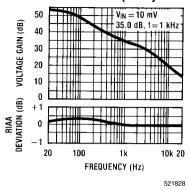
Capacitive loads greater than 50 pF must be isolated from the output. The most straightforward way to do this is to put a resistor in series with the output. This resistor will also prevent excess power dissipation if the output is accidentally shorted.

Noise Measurement Circuit

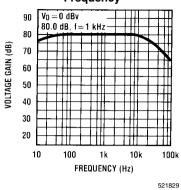

521827

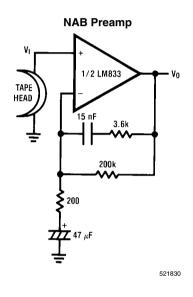
Complete shielding is required to prevent induced pick up from external sources. Always check with oscilloscope for power line noise.

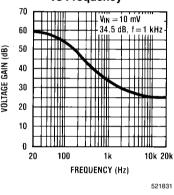
Total Gain: 115 dB @f = 1 kHz Input Referred Noise Voltage: e_n = V0/560,000 (V)



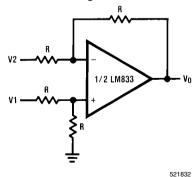
RIAA Noise Voltage Measurement Circuit

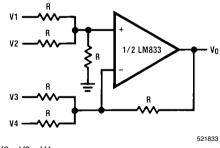



RIAA Preamp Voltage Gain, RIAA Deviation vs Frequency

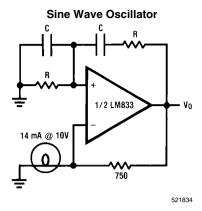

Flat Amp Voltage Gain vs Frequency

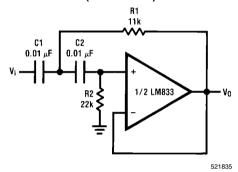
Typical Applications




NAB Preamp Voltage Gain vs Frequency

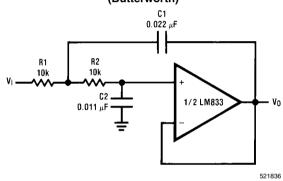
 $A_V = 34.5$ F = 1 kHz $E_n = 0.38 \text{ }\mu\text{V}$ A Weighted


Balanced to Single Ended Converter


 $V_0 = V1 + V2 - V3 - V4$

$$f_0 = \frac{1}{2\pi BC}$$

Second Order High Pass Filter (Butterworth)

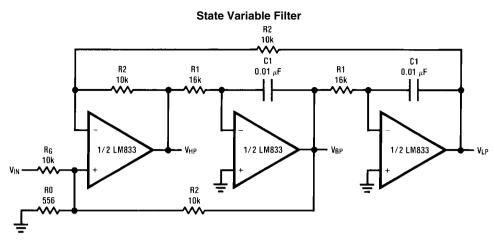


if
$$C1 = C2 = C$$

$$R1 = \frac{\sqrt{2}}{2\omega_0 C}$$

Illustration is $f_0 = 1 \text{ kHz}$

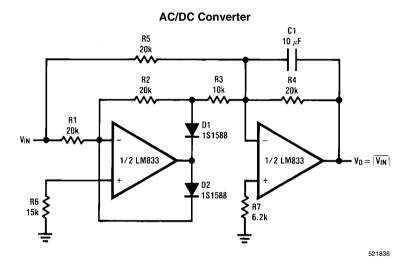
Second Order Low Pass Filter (Butterworth)



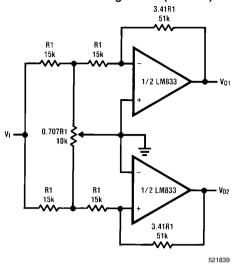
$$C1 = \frac{\sqrt{2}}{\omega_0 B}$$

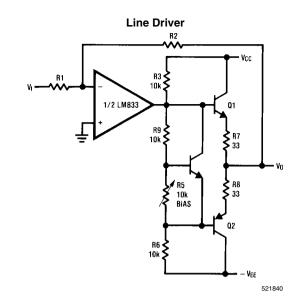
$$C2 = \frac{C1}{2}$$

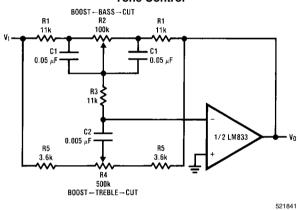
Illustration is $f_0 = 1 \text{ kHz}$



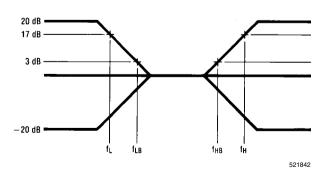
521837


$$f_0 = \frac{1}{2\pi C 1 R 1}, Q = \frac{1}{2} \left(1 + \frac{R2}{R0} + \frac{R2}{RG} \right), A_{BP} = QA_{LP} = QA_{LH} = \frac{R2}{RG}$$


Illustration is $f_0 = 1 \text{ kHz}$, Q = 10, $A_{BP} = 1$



2 Channel Panning Circuit (Pan Pot)


Tone Control

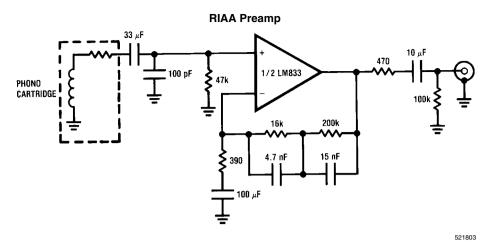
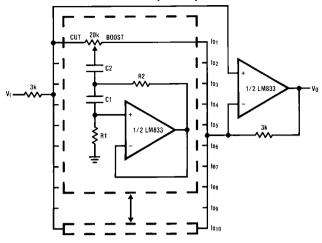

$$\begin{split} f_L &= \frac{1}{2\pi R2C1}, f_{LB} = \frac{1}{2\pi R1C1} \\ f_H &= \frac{1}{2\pi R5C2}, f_{HB} = \frac{1}{2\pi (R1 + R5 + 2R3)C2} \end{split}$$

Illustration is:

$$f_L = 32 \text{ Hz}, f_{LB} = 320 \text{ Hz}$$

 $f_H = 11 \text{ kHz}, f_{HB} = 1.1 \text{ kHz}$

 $\begin{array}{l} A_{\nu}=35~dB\\ E_{n}=0.33~\mu V\\ S/N=90~dB\\ f=1~kHz\\ A~Weighted\\ A~Weighted, V_{IN}=10~mV\\ @f=1~kHz\\ \end{array}$

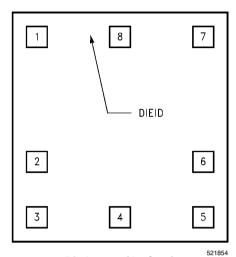

If R2 = R5, R3 = R6, R4 = R7

$$V0 = \left(1 + \frac{2R2}{R1}\right) \frac{R4}{R3} (V2 - V1)$$

Illustration is: V0 = 101(V2 - V1)

10 Band Graphic Equalizer

fo (Hz)	C ₁	C ₂	R ₁	R ₂
32	0.12µF	4.7µF	75kΩ	500Ω
64	0.056µF	3.3µF	68kΩ	510Ω
125	0.033µF	1.5µF	62kΩ	510Ω
250	0.015µF	0.82µF	68kΩ	470Ω
500	8200pF	0.39µF	62kΩ	470Ω
1k	3900pF	0.22µF	68kΩ	470Ω
2k	2000pF	0.1µF	68kΩ	470Ω
4k	1100pF	0.056µF	62kΩ	470Ω
8k	510pF	0.022µF	68kΩ	510Ω
16k	330pF	0.012µF	51kΩ	510Ω


Note 7: At volume of change = $\pm 12 \text{ dB}$

Q = 1.7

Reference: "AUDIO/RADIO HANDBOOK", National Semiconductor, 1980, Page 2–61

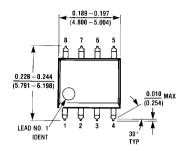
LM833 MDC MWC DUAL AUDIO OPERATIONAL AMPLIFIER

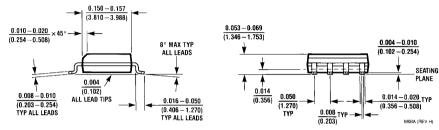
Die Layout (A - Step)

Die/Wafer Characteristics

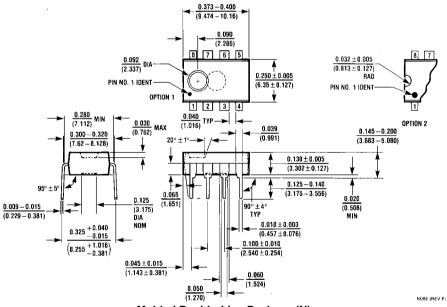
Fabrication Attributes		General Die Information		
Physical Die Identification	LM833A	Bond Pad Opening Size (min)	110µm x 110µm	
Die Step A		Bond Pad Metalization	ALUMINUM	
Physical Attributes		Passivation	VOM NITRIDE	
Wafer Diameter	150mm	Back Side Metal	BARE BACK	
Dise Size (Drawn)	1219µm x 1270µm 48mils x 50mils	Back Side Connection	Floating	
Thickness	406µm Nominal		:	
Min Pitch	288µm Nominal			

Special Assembly Requirements:
Note: Actual die size is rounded to the nearest micron.

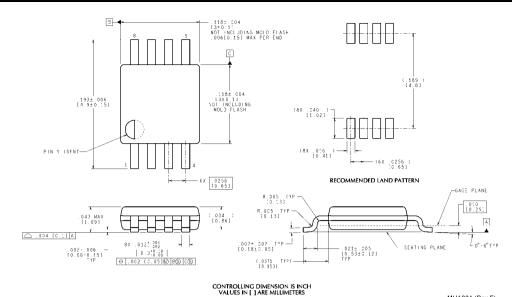

Die Bond Pad Coordinate Locations (A - Step)								
	(Referenced to die center, coordinates in μm) NC = No Connection							
SIGNAL NAME	PAD NUMBER	X/Y COOF	RDINATES	PAD SIZE				
SIGNAL NAME	PAD NUMBER	Х	Υ	Х		Y		
OUTPUT A	1	-476	500	110	х	110		
INPUT A-	2	-476	-212	110	х	110		
INPUT A+	3	-476	-500	110	х	110		
VEE-	4	-0	-500	110	х	110		
INPUT B+	5	476	-500	110	х	110		
INPUT B-	6	476	-212	110	х	110		
OUTPUT B	7	476	500	110	х	110		
VCC+	8	0	500	110	х	110		



IN U.S.A	
Tel #:	1 877 Dial Die 1 877 342 5343
Fax:	1 207 541 6140
IN EUROPE	
Tel:	49 (0) 8141 351492 / 1495
Fax:	49 (0) 8141 351470
IN ASIA PACIFIC	
Tel:	(852) 27371701
IN JAPAN	
Tel:	81 043 299 2308



Physical Dimensions inches (millimeters) unless otherwise noted


Molded Small Outline Package (M)
Order Number LM833M or LM833MX
LM833AM, LM833AMX
NS Package Number M08A

Molded Dual-In-Line Package (N) Order Number LM833N NS Package Number N08E

MUA08A (Rev F)

8-Lead (0.118" Wide) Molded Mini Small Outline Package Order Number LM833MM or LM833MMX NS Package Number MUA08A

Notes

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

roducts		Applications
	ti aaaa/adia	A

Pr

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio www.ti.com/communications **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

www.ti-rfid.com